Nanophotonic Devices Enable New Applications for Laser Frequency Combs

Featuring Daniel Hickstein from Octave Photonics

12 October 2022
Create lasting, valuable connections.

Engaging communities
Innovative events
Focused networking
Enriching webinars

optica.org/technicalgroups
A Quick Zoom Tutorial

– Submit a question by clicking on “Q&A”

– Like a question that’s been submitted? Click the “thumbs up” icon to vote for it.

– Share your feedback in the survey.
Create lasting, valuable connections.

Engaging communities
Innovative events
Focused networking
Enriching webinars

optica.org/technicalgroups
Question & Answer
Create lasting, valuable connections.

Engaging communities
Innovative events
Focused networking
Enriching webinars

optica.org/technicalgroups
Nanophotonic devices enable new applications for laser frequency combs

Dan Hickstein
Principal Scientist
Octave Photonics
Louisville, Colorado, USA
Octave Photonics: a small photonics company

• Office/Laboratory in Louisville, CO
• Spinoff from NIST.
• Employees: 3 (David Carlson, Zach Newman, Dan Hickstein)
• Funding: 35% sales/65% federal grant
• Goal: easy-to-use nanophotonic devices
• Currently hiring Nanophotonics Engineer/Physicist!
• 1. Introduction to laser frequency combs
 • What is a frequency comb?
 • Applications

• 2. Introduction to nanophotonic devices
 • Nanophotonic devices
 • Octave Photonics: easy-to-use nonlinear nanophotonics

• 3. Applications of nonlinear nanophotonics to frequency combs
 • Compact optical clocks
 • “Astrocombs” for exoplanet detection
 • “Microcombs” for tiny frequency combs
Part 1 – Introduction to laser frequency combs
Optical frequency comb

Laser frequency comb

Pulses typically <100 fs
1 fs = 10^{-15} seconds = 0.000000000000001 seconds
Laser frequency combs: rulers for light

\[\tau_{r.t} = \frac{1}{f_{\text{rep}}} \]

\[\nu_N = N f_{\text{rep}} + f_o \]

\[f_o = f_{\text{rep}} \frac{\Delta \phi}{2\pi} \]
Many types of frequency comb spectroscopy

- **Direct spectroscopy**
 - Using comb as the light source
 - Requires high-res. spectrometer

- **Dual-comb spectroscopy**
 - Single detector
 - Very high resolution
 - Large frequency range

- **Spectrograph calibration**
 - Improves accuracy/precision of existing spectroscopy

- **CW laser frequency measurement**
 - Optical atomic clocks
Optical atomic clocks

Stable CW laser

Atoms

Strontium
Photo: Ye Lab, University of Colorado

Ytterbium
Photo: NIST
Frequency combs: optical clockwork

Optical clock

Heterodyne signal -> electronic readout
Frequency combs: optical clockwork
Frequency comb applied spectroscopy

Frequency Comb: rapid + broad bandwidth + good spectral discrimination
Frequency comb breathalyzer

• Broad bandwidth + high resolution
• Can lock to high-finesse cavity
• Recently: can detect COVID! (with limited sensitivity)
• Optica Applied Spectroscopy Webinar by David Nesbitt, Nov 10 2022.

Work from D. Nesbitt and J. Ye groups, JILA, University of Colorado and NIST

Credit: J. Wang, NIST
Frequency comb technology: becoming turnkey

• Transition from Ti:sapphire to fiber lasers facilitates field applications
Dual comb spectroscopy: ready for field applications

- Provides the full resolution of the frequency comb.
- Can use a single detector
- Spectra acquired very quickly

From Fortier and Baumann 2019. NIST. https://www.nature.com/articles/s42005-019-0249-y
Dual comb spectroscopy in the (oil and gas) field

Field-based gas sensing

Absorbance

CO₂ CH₄ H₂O

Wavelength (nm)

1630 1640 1650 1660 1670

Photo: LongPath Technologies, LLC

Next-generation comb applications

- Require comb sources that are smaller, lighter, lower-power-consumption, and rugged.

Space-based metrology (e.g., GPS)
Airborne gas sensing
Compact standards references

NIST-on-a-chip
Part 2 - Nanophotonics
Nanophotonic chips: optics made tiny
Nonlinear nanophotonics: nonlinear optics made tiny

• Exceptionally high nonlinearity
 • High confinement of light provides maximum peak intensity

• Geometric control of dispersion
 • Allows phase matching of wavelength-conversion processes

1550 nm pumped supercontinuum generation
Nonlinear nanophotonics simplified

Typical lab setup
- High-stability microscope
- Precision nano-alignment stages
- Large enclosure needed

Fully connectorized device
- Plug-and-play
- No alignment needed
- Fully enclosed

~ 1 meter

~ 2 cm
Waveguide packaging

Waveguide packages suitable for:

- Vacuum environments
- Low SWaP applications
- High peak power/intensity (>10 kW, >10^{12} W/cm²)
- High average power/intensity (>4 Watts, >400 GW)

Options include:

- Custom supercontinuum spectrum
- Hermetic sealing
- Active temperature control
- RF output
End-to-end development for nanophotonics

Device simulation → Fabrication → Die separation

Deployment ← Packaging ← Lab testing
Part 3 – Applications of nanophotonics to frequency combs
Application 1: Supercontinuum generation

Nanophotonic waveguide for supercontinuum
Pumped with ~100 fs pulses at 1550 nm
Experimental supercontinuum

- Nanophotonic waveguide, ~100 pJ
- Nonlinear fiber, ~1000 pJ

Width: 2100 nm

Wavelength (nm)

Relative intensity (dB)

Intensity (10 dB/div)

Nonlinear fiber, ~1000 pJ
Tunable spectrum

Experimental supercontinuum from ~640-nm-thickness SiN waveguides
Nanophotonic chip for strontium clock

$|g = {}^1S_0\rangle$

$|e = {}^3P_0\rangle$

$|e = {}^3P_1\rangle$

$|e = {}^3P_2\rangle$

$|e = {}^3S_1\rangle$

1P_1

1D_2

679 nm
707 nm
7 MHz

679 nm
1.4 MHz

1.9 μm
450 Hz

6.5 μm
620 Hz

460.8 nm
32 MHz

689.4 nm
7.6 kHz

698.4 nm
1 mHz

1 μm

10 μm

689 nm
780 nm
922 nm

689 nm
698 nm
780 nm
922 nm

Spectral flux (dBm/nm)

Wavelength (nm)
Frequency comb self-referencing

f-2f self referencing

Necessary to use the comb as a calibrated “ruler” for measuring light
Low-power self referencing

- Low pulse-energy self-referencing due to:
- Increased nonlinearity
- Generate supercontinuum light directly at 2f
Low-power comb stabilization

>30 dB signal-to-noise ratio provides reliable stabilization

@100 MHz, 12 mW = 120 pJ
Battery operated frequency comb

- Power reduced from 33 W to 5 W
- Huge power reduction!
- But still a bulky system

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conventional 200-MHz comb (HNLF + PPLN)</th>
<th>100-MHz comb + fiber resistive modulator + HNLF + PPKTP</th>
<th>100-MHz comb + passively-cooled pumps + SiN waveguide + PPKTP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature tuning of f_{cp}</td>
<td>7.5 W</td>
<td>0.23 W</td>
<td>0.23 W</td>
</tr>
<tr>
<td>Oscillator pump</td>
<td>4.4 W</td>
<td>4.4 W</td>
<td>1.85 W</td>
</tr>
<tr>
<td>Amplifier pumps</td>
<td>20 W</td>
<td>10 W</td>
<td>2.75 W</td>
</tr>
<tr>
<td>Doubling waveguide TEC</td>
<td>~1 W [11]</td>
<td>0 W</td>
<td>0 W</td>
</tr>
<tr>
<td>TOTAL</td>
<td>33 W</td>
<td>14.6 W</td>
<td>4.8 W</td>
</tr>
</tbody>
</table>
Comb-Offset Stabilization Module (COSMO)

COSMO module:

- Supercontinuum, SHG, photodetector, and amplifier
- Complete CEO detection module in <20 cm³
- >200 pJ pulse at 1550 nm, ~40 dB SNR
- Fiber input, RF output
COSMO: enabling ultra-compact and GHz combs

Compact 100 MHz combs

Stabilizing 1+ GHz frequency combs

Menhir Photonics 1 GHz Oscillator

Vescent SLICE-OPL

Octave Photonics COSMO

Dispersion compensating fiber

Locked f_{SO}

RF spectrum analyzer
Application 2: Searching for exoplanets

- How do planets form and evolve?
- How diverse are planetary systems?
- Is there life elsewhere?
Searching for exoplanets

Transit Method

Doppler Radial Velocity

- Size
- Density
- Mass
Precision radial velocimetry
Doppler shifts are tiny, so a comb is required

- Earth-like planet:
 ~10 cm/sec = ~100 kHz
- Resolution ~1 GHz/pixel
- ~10 micron pixels -> 1 nm shift!
- Calibration must be optimal
- 10-to-30 GHz comb source is ideal
- But, most combs are 0.1 GHz!
- Use electro-optic combs
Electro-optic frequency comb

Nanophotonic waveguides for EO comb at Hobby-Eberly

Success! 99+% uptime. But, complicated.

Hobby–Eberly Telescope
Nanophotonic chip simplifies spectrograph calibration

(a) State-of-the-art: Habitable-Zone Planet Finder OFC, Hobby-Eberly

1. Eliminate coupling stages
2. Eliminate auxiliary comb
3. Eliminate nonlinear fiber
4. Eliminate grating compressor
5. Eliminate flattener

Next-gen: EO comb + SWERVI

Supercontinuum Waveguides for Extreme Radial Velocimetry Instrumentation (SWERVI)
Astrocomb system

- Coupling stages eliminated with packaged device.
- Replace normal dispersion fiber with normal dispersion waveguide.
- Replace free-space grating-based pulse compressor with on-chip pulse compression.
- On-chip splitter sends 780-nm light to f-2f self-referencing system.
- Splitter+flattener design replaces the programmable spectral flattener.
Application 3: microcombs

Continuous wave (CW) laser in

Comb out
Microcomb generation

Making microcombs micro

InP DFB laser

SiN ring resonator

Briles et al., APL Photonics, 2021- https://doi.org/10.1063/5.0035452
Summary

• Frequency combs: emerging spectroscopy applications
• Nanophotonics: making frequency combs smaller and more capable
• Nanophotonics enables:
 • Compact optical clocks
 • Astrocombs
 • Microcombs
 • and more!
• www.octavephotonics.com
• www.linkedin.com/company/octavephotonics
• Thanks! Questions?
• daniel.hickstein@octavephotonics.com
Flat spectrum via waveguide-width change

- Replace auxiliary comb via direct self-referencing with octave span
- Generate flat spectrum via dispersion-changing waveguide