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Using Atmospheric Lidar to “"See the Air’
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Alitude, km

Cirrus Clouds

Aura/OMI - 06/08/2006 02:43-09:23 UT

SO, mass: 29.893 kt; Area: 1291875 km; SO, max: 2.49 DU at lon: 143.32 lat: 17.12
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Soufriere (Montserrat — Caribbean) erupted on May 20. Its water droplet/sulfuric acid plume was tracked by OMI
and seen crossing over Indonesia by CALIPSO on June 7.

From Dr. Irina Sokolik’'s Remote Sensing
of the Atmosphere and Oceans course
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Overview
« Atmospheric Lidar Theory
* History of Lidar for Atmospheric Study

* Recent Developments
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Basic Lidar system:

The Elastic Backscatter Lidar
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Components of the Lidar Equation

The power received from a range bin is proportional to: B (m2/m3-sr = m-isr 1)

« Power transmitted, P,

Transmitter and receiver optical efficiency, k, and
Kk

rec

Receiver collecting area, A

Tpatn = xp[- Jou(r)alr]
o(r) (m?3/m3=m1)

A range-dependent geometrical overlap factor (not
shown in figure), G(r) }

The range bin backscatter coefficient, 8

The length of the range bin, ct/2

The atmospheric transmittance to & from the range

bin, T path

Gr GeorgiaTech
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The Elastic Backscatter Lidar equation

A /ct R
PL(R) = P, 07 g G(R) (R—) () BRexp [—z | atr)ar ]

A . .
P; (R) = Power received from range, R (ﬁ) = Receiver solid angle (sr)
P, = Average power per laser pulse (C_t) = Range bin length (m)
2

coefficient (m-1sr-1)

Nr = Receiver optical efficiency B

exp [—2 fo a(R")dR' ] = Two-way path transmittance
G (R) = Geometric overlap factor

a(R) = Atmos. extinction coefficient

(m)
Georgia Tech
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The Elastic Backscatter Lidar equation

A\ /ct R o
vower | PLR)| = Py Mg G(R) (g) (7)ﬁ(R)eXp [—2 fo a(R)dR]

received per
range bin

A . |
P; (R) = Power received from range, R (ﬁ) = Receiver solid angle (sr)

P, = Average power per laser pulse (C_t) = Range bin length (m)
2

coefficient (m-1sr-1)

Nr = Receiver optical efficiency B

exp [—2 fo a(R")dR' ] = Two-way path transmittance
G (R) = Geometric overlap factor

a(R) = Atmos. extinction coefficient

(m)
Georgia Tech
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The Elastic Backscatter Lidar equation

Power
transmitted

A\ /ct R o
vower | PLR)| =P T M G(R) (g) (7) B(R)exp [—2 fo a(R")dR ]

received per
range bin

A . |
P; (R) = Power received from range, R (ﬁ) = Receiver solid angle (sr)

P, = Average power per laser pulse (C_t) = Range bin length (m)
2

_ _ o coefficient (m-1sri)
Nr = Receiver optical efficiency R
exp [—2 fo a(R")dR' ] = Two-way path transmittance

G (R) = Geometric overlap factor
a(R) = Atmos. extinction coefficient

(m)
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The Elastic Backscatter Lidar equation

Photons
transmitted

— A\ /ct R , ’
power | LLE) = Fo 7 1r G(R) (g) (7) B(R)exp [—2 fo a(R)dR ]

received per
range bin

A . |
P; (R) = Power received from range, R (ﬁ) = Receiver solid angle (sr)

P, = Average power per laser pulse (C_t) = Range bin length (m)
2

coefficient (m-1sr-1)

Nr = Receiver optical efficiency B

exp [—2 fo a(R")dR' ] = Two-way path transmittance
G (R) = Geometric overlap factor

a(R) = Atmos. extinction coefficient

(m)
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The Elastic Backscatter Lidar equation

Photons Atmospheric variables
transmitted

— A [ct R
P.(R)=P, nTch:(R)( )(—)mmexp[—z | a(R)dR]
0

Power ﬁ )
received per
range bin
A\ _ . .
P; (R) = Power received from range, R =z ) = Receiver solid angle (sr)
P, = Average power per laser pulse (%t) = Range bin length (m)

: : . coefficient (m-1srt)
Nr = Receiver optical efficiency

R
exp [—2 fo a(R")dR' ] = Two-way path transmittance
G(R) = Geometric overlap factor
R) = Atmos. extinction coefficient
a

(m)
Georgia Tech
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Elastic Backscatter Equation Assumptions

The backscattered light is at the same wavelength as the transmitted light

All range-dependent signal losses apart from the 1/R? factor are due to the
atmosphere, not the technology

Photons experience a single scattering event during their trip through the
atmosphere - no multiple scattering

The entire laser pulse is contained within the range bin
o and 3 are constant within a range bin

Only one laser pulse at a time is in the atmosphere

Gl" GeorgiaTech
Research Institute



o(R) & B(R) — Extinction and Backscatter Coefficients

Extinction and backscatter coefficients have
components from interactions with aerosols and « The terms 3(z) and a(z) are the range-

molecules: dependent parameters of interest for
a(R) = Agero + Aot atmospheric studies

_ * The molecular scattering quantities are
B(R) = Baero + Bmot proportional to atmospheric number
density (N,, O,, Ar)

Atmospheric extinction is due to absorption and
scattering: « Unfortunately, they represent several

_ unknowns in a single equation
C((R) = Qgero, abs T Xaero, sca 9 q

— i i !
+®mot abs + Xmol. sca An underdetermined system (on its own!)

Gl" GeorgiaTech
18 Research Institute



The Challenge

* The lidar equation describes one signal that depends on two atmospheric
parameters, in different ways.

— There is no unigue solution

— We must either reduce the number of parameters to one by:
 Defining S, = a/f, (S0 a = S_B) or
« Using Rayleigh [ in aerosol-free regions to calibrate, or

* Working in the mesosphere where o ~ 0,

— Or add more information:
* From other instruments

« Using Two (or more) wavelengths, angles, polarizations, etc.

— Much of the history of LIDAR describes efforts to overcome this challenge!



20

Rayleigh Lidar (Upper Atmospheric Lidar)

(e1)° anlolgh Lidar Temperature Perturbations 20141108 - (n Na Lidar Temperature Perturbations 20141108 -

* Rayleigh lidar essentially bypasses the ] ‘ s
lower atmosphere and only receives g : =
useful signal from >30 km where aerosols £ «- s o
are typically not present (Hauchecorne . 0 4, &
and Chanin; 1980) ot p

10 12 14

6 8
Hour (UT)
— Measurements include: temperature,

density, dynamics (gravity waves, tides, f R e
planetary waves) g s}
* Resonance fluorescence lidar f o
transmitted light is matched to a specific T T (]/ e
atomic transition or electronic transition of g WessouseTemperowe ()
a specific atom (Bowman et al., 1969) 2o | B I
— Upper atmospheric species studied:
sodium, iron, potassium, calcium/calcium BT PR T
ion, nickel e e e " Yuan et al., 2019
Figure 3 T long e varations of (o) mesopause heightand bottom)temperatur trend fthe ldar mesured
« Limits studies to upper atmosphere e e e s e gt —"
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Fernald-Klett Data Analysis Method

» The Fernald-Klett algorithm is a data analysis
method for retrieving aerosol extinction from lidar b G
signal (Fernald et al., 1972; Fernald, 1984, Klett, :
1981)

* Inversion technique, which requires additional
information:

>

o i R -

— Estimated or modeled molecular extinction profile Adifosai Esticion 2 Mkl Liyar éch

— Initial value of aerosol extinction at maximum range g

— Initial guess of the lidar aerosol extinction-to-

backscatter ratio, S, = %
a

— Auxiliary measurement to constrain the inversion (e.g.
sun photometer aerosol optical depth measurement)

Figure 3. MPLNET V3 Cloud, Aerosol and PBL
» This method is still widely used in modern Products
atmospheric lidar programs like NASA's Micro-Pulse
Lidar NETwork (MPLNET; Welton et al., 2001)

Welton et al., 2018

Gl" GeorgiaTech
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Depolarization and Multi-
Wavelength Lidar

e Can add further hardware capabilities
to distinguish aerosol types

i i il il

 Depolarization lidar measures degree to
which the received light’'s polarization : -
state has changed from the transmitter
laser light L e ———— L

Fig. 1. Time—height cross section of the range-corrected signal (upper panel, log-scale, a.u.) and the volume linear depolarization ratio (lower panel) at 532 nm derived from MULIS
lidar measurements at Maisach from 16 April 17 UTC to 17 April 24 UTC.

— Lower depolarization - atmospheric

scatterers are spherical romse - B
— Higher depolarization - atmospheric § £ ¥, ‘
scatterers are non-spherical 1] [ R | § 7] e g
» Adding multiple wavelengths gives more fﬂm " e

T T T T T T T T T T T T T T T T T T
000 005 010 015 020 025 030 035 040 045 050 000 005 010 015 020 025 030 035 040 045 050

Information about particle sizes s parice s copcarstion ol B v Rl

Fig. 14. Particle lidar ratio vs. particle linear depolarization ratio for different aerosol types at 355 nm (left) and 532 nm (right).

Grof3 et al., 2012 Gr Georgia Tech.

Research Institute
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Differential Absorption Lidar (DIAL)

Gimmestad, 2005

150.00

* Transmit two different wavelengths that have
distinct absorption cross-sections (o) for the

interrogated trace gas
— ldentify “on” and “off” wavelengths for selected
trace gas, difference of cross sections proportional
to difference in atmospheric extinction:

Aa = Pirgce gas Ao 1

\

ptrace gas —

120.00

$0.00

60.00

Altitude (km AGL)
(Aqdd) uonenuasuo)) auoz(

30.00

0.00

1 iln Pon 5 8 7 8 9 10 1 Lzou:isw:' (E})s'r) 16 17 18 18 20 21
2A0 |dR POff

- N W b

* Mostly used to measure trace gas concentrations:
ozone, methane, water vapor, etc.

Altitude [km, AGL]

i Sl : : I e
0 6 12 18 24 30 36 42 48 54 60
Time [Hours]

Stillwell, 2020
* Recent work has demonstrated DIAL system for

temperature measurements (Stillwell et al., 2020)

Gr GeorgiaTech
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1E*4 v T v T T T

R I . d {E-5 rRayleigh i IL;'quid 'Wale'r |
am a.n I ar S 1E-6 | ® Sc:moiQ—branch lines
- ¥ Sum ot rotational lines
E 1e7f ¥
. E 0 N.
« Raman lidar creates a source at a new < > e
wavelength, in the scattering volume, by inelastic 5
scattering molecular species g
8
— The Raman backscatter is much weaker than
Raylelgh 70 380 9% 400 410 420
- - - Wavelength, nm
« Raman lidars designed to receive two or more -~ Measures, 1994

shifted wavelengths

Raman lidar technique can be used to

spectroscopically separate molecular and aerosol .
extinction

Altitude, m (AGL)

» Technigue can also be used to measure:

. . [ ,41!1» — By " % . 5 » ; “ =
— Vibrational-rotational Raman: Trace gas do oo mo %L;“fi e e e G Dinoev et al.,

concentrations (water vapor, methane, carbon , , , _ , o 2013
. Fig. 14. Six-day time series of water vapor with 10 min time res-
d|OX|de) olution. All data are shown, including data with a statistical error
> 10%. The noisy zones above 5000 m (around noon) mark the
— Rotational Raman: Temperatu re increase in statistical error due to the solar background during the Georaia Tech
daytime. The white zones mark data gaps. Gr g itute

Research Institute
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High Spectral Resolution Lidar (HSRL) =

« HSRL technique optically separates
Rayleigh (molecular) and Mie (aerosol)
signals (Shipley, 1983)

» Spectral distribution of molecular signal is
Doppler-broadened, aerosol spectral
distribution is not broadened

— An atomic-vapor filter is used to block the
aerosol signal so that the molecular and
aerosol signals can be separated

* Returned signal separated into two
channels:

— Molecular backscatter channel

— Molecular + aerosol backscatter channel

 Profile of molecular density is
modeled/measured from auxiliary
instruments is required to calibrate

Atmospheric Scattering

Cabannes-Brillouin
(Molecular) Scattering

Mie (Aerosol) ~3.0 GHz FWHM

Scattering
<100 MHz FWHM

SIGNAL

Hair et al., 2008 T v

Atmospheric Scattering
After the lodine Vapor Filter

Cabannes-Brillouin

Attenuated backscatter (m’ st ‘) 14-Jan-2004 ~2GHz (Molecular) Scattering

SIGNAL

< -

Altitude (km)
w F S (3.

R

0.0L . . . ; L 107
5:00 6:00 7:00 8:00 9:00 1000 11:00 1200 13:00 14:00 1/(mstr)
Time (UT)

Fig. 5.6. Attenuated backscatter image recorded with the HSRL on 14 January 2004.

Aerosol backscatter cross sectionm 'str ' 14-Jan-2004 00

Eloranta, 2005

; : i ; 1e-8
7:00 800 900 1000 11:00 12:00 1300 14:00 1/(mstr)
Time (UT)

6:00

Fig. 5.7. Aerosol backscatter coefficient recorded on 14 January 2004.

Gl.. GeorgiaTech
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Doppler Wind Lidar

 Typically achieved with coherent
detection: atmospheric backscatter
signal, is mixed with a local oscillator
reference beam (Pearson et al., 2009)

» Doppler shifts are determined from the
spectrum of the mixed signal

* Most systems are built to scan and
measure line-of-sight velocities at each

pointing angle in the scan
— LOS winds can be decomposed into 3D
components

« Commercial systems widely available
(Halo Photonics, Vaisala)

Range/time/Doppler plot for a fixed LOS 40 m gates, 1-second average per ray, 6-minute record.
The raw data were saved and re-processed as shown below.

https://halo-photonics.com/lidar-

systems/streamline-allsky-series/ Gy GeorgiaTech



https://halo-photonics.com/lidar-systems/streamline-allsky-series/
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Lidar Design

* There are many different types lidar to
choose from!

e Lidar performance is affected by many
atmospheric, optical, electronic,
mechanical, algorithmic, and geometric
factors

 High-fidelity atmospheric lidar
simulator coupled with Monte Carlo
analysis has been developed to aid in
lidar system design and algorithm
development (Valenta & Sox, 2022)

0.30 1

0.15

ADC Output - bs (V)
o
=
(=]

0.05 4

0.00 1

— Simulated - LR
—— Simulated - SR
——- Measured - LR
-=-~- Measure d - SR

0 500 1000

1500 2000

Range (m)

le off vertical (Degrees)

c.) Angle off Vertical

d.) Extinction-to-backscatter ratio

Figure 14. Transmission error Monte Carlo results while varying the a.) Angstrom coefficient b.) aerosol optical depth (AOD), ¢.)

angle off vertical, and d.) acrosol extinct

Valenta & Sox, 2022

1on-to-backscatter ratio.
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Overview

« Atmospheric Lidar Theory

History of Lidar for Atmospheric Study

Recent Developments

Gl" GeorgiaTech
Research Institute



* Lidar technique first proposed by Sygne
1930 to measure atmospheric scatter
from searchlight beams

Johnson et al., 1939

4 ' 13

HEIGHT IN KM

i Yoo !

2¢ ! 28

FIG. J—THEORETICAL AND EXPERIMENTAL RESPONSE
OF RECEIVER WITH TRANSPARENT

CLOUD AT 12 kM

@
1

o
1

| SIGNAL-CURRENT IN MICROAMPERES X 107 PEAK AC,
L]
1 L 1

\'-u-

« First measurements came from bistatic r I
searchlight systems (e.g. Hulbert, 1937) \\ i ‘
« Johnson et al., (1939) showed profile of | memeres cume roa \\
atmospheric structure with respect to I e N
altitude using a “pulsed” system
Hulbert, 1937
Lidar with First First Lidar Techniques Lidar NASA ESA
searchlights Laser Lidar Developed Networks CALIPSO  Aeolus
I — I I I I >
1930s 1960 1963 1960-1990s 2000s 2006 2018
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Fiocco & Smullin, 1963
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Many Lidar Technigques

« Many atmospheric lidar technigues
were developed after the first system

came online:
—Rayleigh lidar ~1960s-1980s:
Hauchecorne & Chanin, 1980

—Raman lidar ~1960s-1970s: Leonard &
Caputo, 1974; Cooney

—DIAL ~ 1960s-1970s: Schotland, 1966
—HSRL ~ 1980s: Shipley et al., 1984

Lidar with First First Lidar Techniques Lidar NASA ESA
searchlights Laser Lidar Developed Networks CALIPSO  Aeolus
| | | | | | |
| | | | I | |
1930s 1960 1963 1960-1990s 2000s 2006 2018

Fig. 62. (Continued)

Measures, 1994

Gr. GeorgiaTech
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Ground-based Lidar Networks

* NASA Micro-Pulse Lidar Network (MPLNET)
— ~26 active Micro-pulse elastic backscatter lidars

with depolarization functionality

* NASA Tropospheric Ozone Lidar Network

(TOLNET)

—~6 DIAL Ozone lidars (Leblanc et al., 2018)

« European Aerosol Research Lidar Network

(EARLINET)

— 30+ elastic and multi-wavelength Raman lidars

(Pappalardo et al., 2014)

Map  Satellite

RN g
Ve ,-» = i

MPLNET V3 Data:

Lidar with First First Lidar Techniques Lidar NASA ESA
searchlights Laser Lidar Developed Networks CALIPSO  Aeolus
| | | | | | |
| | | | I | |
1930s 1960 1963 1960-1990s 2000s 2006 2018
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(b) Cloud Aerosol Discrimination

Omar et al., 2009 [T —

] ] I -1 f o :
Lidars in S pace: e ] T
B2 8 & 2 & ® »v ® 8 SLAL8 RS B8 BB

* NASA/CNES Cloud-Aerosol Lidar with Orthogonal
Polarization (CALIOP) onboard the CALIPSO

satellite
— Launched in 2006, ended 2023

 — L ——
— Elastic backscatter lidar with depolarization and two Marinm/zon:yed ;. S \f il
ontinental Continental  Dust
Wa.ve I e n gth S FIG. 4. (a) A 532-nm backscatter browse image. (b) cloud-aerosol mask, and (¢) the corresponding aerosol subtyping plot showing vast

smoke layer in southwestern Africa during the peak of the burning season, observed on 8 Aug 2006 and stretching across land into the
South Atlantic. The relative scales are as in Fig. 3.
x seen from the east (blue)

b I Polar vorte:
Subtropical jets Polar vortex seen from the west (red)

« ESA Atmospheric Laser Doppler Instrument

: : . ESA/ECMWE:http://
(ALADIN) onboard Atmospheric Dynamics Mission-  n, esa.int/spaceinim
Aeolus satellite ages/Images/2018/0
: 9/Winds_imaged_by ;°
— Launched in 2018, ended 2023 neolie Y

— Doppler wind lidar for winds from 0-30 km

Lidar with First First Lidar Techniques Lidar NASA ESA o ' Equator : g Equamr
searchlights Laser Lidar Developed Networks CALIPSO  Aeolus [ aaaaaEnaaases: |
Preliminary Aeolus winds (m/s)
I — I I I I > ’

1930s 1960 1963 1960-1990s 2000s 2006 2018
Gl" GeorgiaTech
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Overview

« Atmospheric Lidar Theory

History of Lidar for Atmospheric Study

Recent Developments
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Campbell
Scientific
SkyVue Pro

Commercialization of Lidar

« Elastic backscatter lidar -
—Droplet Measurement Technologies
Micro Pulse Lidar
—Cellometers from Vaisala, Campbell
Scientific

* Doppler wind lidar =
—Vaisala WindCube
—Halo Photonics Streamline Series

* DIAL -
—Vaisala DA10 water vapor DIAL

Vaisala
WindCube

Gr. GeorgiaTech
Research Institute
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Earth Cloud, Aerosol and Radiation Explorer

(EarthCARE)

ESA/JAXA mission to better understand

Expected launch date: May 2024

Atmospheric lidar (ATLID)
— HSRL
— Depolarization lidar
— For cloud-top, thin-cloud profiling, aerosol
profiling

Also includes:
— Cloud profiling radar - penetrate clouds
— Multispectral imager - wide-scene images
— Radiometer - reflected & outgoing radiation

Earth’s thermal and solar radiation balance 7 - *Qvl‘ (8
:. ‘J‘hqﬁ"g -.":zﬁ‘ M .

(a)

175
150 -

Extinction [m~1)

0 20

0
lllllllll I'§)
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‘ 55
ST yh KSE B
oy -
s L
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' 3
| ?
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-7 :

% s 5
v

LongRude ['E!
(b) s 30741 303.29 300.31 29793 296.08 29443
20.0 g . " e

scatter [sr
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Modeled example
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Latituge ['N]
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0.0 ey =54 "y
7

Height [km]

< > °
Ray. Atten, Backscatter [sr~* m~*]

Featuremask

’
aeds 24 36.36 30.29
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Figure 8 Halifax scene; pancl () shows the input model extinction field, panel (b) shows the forward-modeled Mic co-polar signals, and
panel () shows the forward-modeled co-polar Rayleigh atienuated-backscatter signals. Panel (d) depicts the retrieved FeatureMask for this
scene with the & = 107 m™! model truth extinction contours on top in beige.
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Conclusions

* Light scattering interactions with molecules and particles have been employed as a
method of atmospheric measurement for more than 90 years, with laser transmitters
used in modern technology

« Many different types of atmospheric lidar enable atmospheric studies of:
— Temperature & composition - Rayleigh, Raman, & Resonance Fluorescence lidar
— Dynamics - Doppler wind lidar
— Aerosols & air quality - elastic backscatter, Raman, & HSRL
— Trace gases - DIAL & Raman lidar

« Recent advancements have brought atmospheric lidar technology to the commercial
sector and new lidar systems continue to be deployed on major satellite programs

GeorgiaTech

Research Institute
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MPLNET Data from March 18, 2024 @ El Arenosillo in Doflana National Park, Spain:
https://mplnet.gsfc.nasa.qov/data-policy
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