Seeing the Air: An Overview of Atmospheric Lidar

by
Dr. Leda Sox
Senior Research Scientist
Georgia Tech Research Institute

With
Dr. Christopher R. Valenta, GTRI
Dr. Gary G. Gimmestad, GTRI/GTPE
Light Detection And Ranging (LIDAR)

Ranging from: \(R = \frac{ct}{2} \)

Lidar for Autonomous Vehicles
“Hard-target” Lidar

Bathymetric Lidar
Brown et al., 2019

Topographic Lidar
Moller & Fernandez-Diaz, 2019

Radiohead’s House of Cards music video
Using Atmospheric Lidar to “See the Air”
Soufriere (Montserrat – Caribbean) erupted on May 20. Its water droplet/sulfuric acid plume was tracked by OMI and seen crossing over Indonesia by CALIPSO on June 7.

From Dr. Irina Sokolik’s Remote Sensing of the Atmosphere and Oceans course
Overview

• Atmospheric Lidar Theory
• History of Lidar for Atmospheric Study
• Recent Developments
Overview

• Atmospheric Lidar Theory
• History of Lidar for Atmospheric Study
• Recent Developments
Basic Lidar system: The Elastic Backscatter Lidar
Basic Lidar system:
The Elastic Backscatter Lidar
Basic Lidar system: The Elastic Backscatter Lidar
Sky background

- Atmosphere
- Receiver FOV
- Pulsed Laser
- Telescope
- Detector
- Data System
- Electronics

![Signal vs. Time (Range)]
Components of the Lidar Equation

The power received from a range bin is proportional to:

- **Power** transmitted, P_0
- **Transmitter and receiver optical efficiency**, k_t and k_{rec}
- **Receiver collecting area**, A_{rec}
- A range-dependent **geometrical overlap factor** (not shown in figure), $G(r)$
- The range bin **backscatter coefficient**, β
- The length of the **range bin**, $ct/2$
- The atmospheric **transmittance** to & from the range bin, T_{path}
The Elastic Backscatter Lidar equation

\[P_L(R) = P_o \eta_T \eta_R G(R) \left(\frac{A}{R^2} \right) \left(\frac{ct}{2} \right) \beta(R) \exp \left[-2 \int_0^R \alpha(R') dR' \right] \]

\(P_L(R) \) = Power received from range, \(R \)

\(P_o \) = Average power per laser pulse

\(\eta_T \) = Transmitter optical efficiency

\(\eta_R \) = Receiver optical efficiency

\(G(R) \) = Geometric overlap factor

\(\left(\frac{A}{R^2} \right) \) = Receiver solid angle (sr)

\(\left(\frac{ct}{2} \right) \) = Range bin length (m)

\(\beta(R) \) = Atmos. Volume backscatter coefficient (m\(^{-1}\)sr\(^{-1}\))

\(\exp \left[-2 \int_0^R \alpha(R') dR' \right] \) = Two-way path transmittance

\(\alpha(R) \) = Atmos. extinction coefficient (m\(^{-1}\))
The Elastic Backscatter Lidar equation

\[
P_L(R) = P_o \eta_T \eta_R G(R) \left(\frac{A}{R^2} \right) \left(\frac{ct}{2} \right) \beta(R) \exp \left[-2 \int_0^R \alpha(R')dR' \right]
\]

- **Power received per range bin**
- \(P_L(R) \) = Power received from range, \(R \)
- \(P_o \) = Average power per laser pulse
- \(\eta_T \) = Transmitter optical efficiency
- \(\eta_R \) = Receiver optical efficiency
- \(G(R) \) = Geometric overlap factor

\(\left(\frac{A}{R^2} \right) \) = Receiver solid angle (sr)
\(\left(\frac{ct}{2} \right) \) = Range bin length (m)
\(\beta(R) \) = Atmos. Volume backscatter coefficient (m\(^{-1}\)sr\(^{-1}\))
\(\exp \left[-2 \int_0^R \alpha(R')dR' \right] \) = Two-way path transmittance
\(\alpha(R) \) = Atmos. extinction coefficient (m\(^{-1}\))
The Elastic Backscatter Lidar equation

\[P_L(R) = P_o \eta_T \eta_R G(R) \left(\frac{A}{R^2} \right) \left(\frac{ct}{2} \right) \beta(R) \exp \left[-2 \int_0^R \alpha(R') \, dR' \right] \]

- **Power transmitted**
 - \(P_L(R) \): Power received from range, R
 - \(P_o \): Average power per laser pulse
 - \(\eta_T \): Transmitter optical efficiency
 - \(\eta_R \): Receiver optical efficiency
 - \(G(R) \): Geometric overlap factor

- **Other parameters**
 - \(\frac{A}{R^2} \): Receiver solid angle (sr)
 - \(\frac{ct}{2} \): Range bin length (m)
 - \(\beta(R) \): Atmos. Volume backscatter coefficient (m\(^{-1}\)sr\(^{-1}\))
 - \(\exp \left[-2 \int_0^R \alpha(R') \, dR' \right] \): Two-way path transmittance
 - \(\alpha(R) \): Atmos. extinction coefficient (m\(^{-1}\))
The Elastic Backscatter Lidar equation

\[
P_L(R) = P_0 \eta_T \eta_R G(R) \left(\frac{A}{R^2} \right) \left(\frac{ct}{2} \right) \beta(R) \exp \left[-2 \int_0^R \alpha(R')dR' \right]
\]

System variables

- \(P_L(R) \) = Power received from range, \(R \)
- \(P_0 \) = Average power per laser pulse
- \(\eta_T \) = Transmitter optical efficiency
- \(\eta_R \) = Receiver optical efficiency
- \(G(R) \) = Geometric overlap factor

Variables

- \(\frac{A}{R^2} \) = Receiver solid angle (sr)
- \(\frac{ct}{2} \) = Range bin length (m)
- \(\beta(R) \) = Atmos. Volume backscatter coefficient (m\(^{-1}\)sr\(^{-1}\))

\[
\exp \left[-2 \int_0^R \alpha(R')dR' \right] = \text{Two-way path transmittance}
\]

- \(\alpha(R) \) = Atmos. extinction coefficient (m\(^{-1}\))
The Elastic Backscatter Lidar equation

\[P_L(R) = P_o \eta_T \eta_R G(R) \left(\frac{A}{R^2} \right) \left(\frac{ct}{2} \right) \beta(R) \exp \left[-2 \int_0^R \alpha(R') dR' \right] \]

System variables

- \(P_L(R) \): Power received per range bin
- \(P_o \): Average power per laser pulse
- \(\eta_T \): Transmitter optical efficiency
- \(\eta_R \): Receiver optical efficiency
- \(G(R) \): Geometric overlap factor

Atmospheric variables

- \(\frac{A}{R^2} \): Receiver solid angle (sr)
- \(\frac{ct}{2} \): Range bin length (m)
- \(\beta(R) \): Atmos. Volume backscatter coefficient (m\(^{-1}\)sr\(^{-1}\))
- \(\exp \left[-2 \int_0^R \alpha(R') dR' \right] \): Two-way path transmittance
- \(\alpha(R) \): Atmos. extinction coefficient (m\(^{-1}\))
Elastic Backscatter Equation Assumptions

- The backscattered light is at the same wavelength as the transmitted light
- All range-dependent signal losses apart from the $1/R^2$ factor are due to the atmosphere, not the technology
- Photons experience a single scattering event during their trip through the atmosphere - no multiple scattering
- The entire laser pulse is contained within the range bin
- α and β are constant within a range bin
- Only one laser pulse at a time is in the atmosphere
Extinction and backscatter coefficients have components from interactions with aerosols and molecules:

\[\alpha(R) = \alpha_{aero} + \alpha_{mol} \]

\[\beta(R) = \beta_{aero} + \beta_{mol} \]

Atmospheric extinction is due to absorption and scattering:

\[\alpha(R) = \alpha_{aero, abs} + \alpha_{aero, sca} \]
\[+ \alpha_{mol, abs} + \alpha_{mol, sca} \]

- The terms \(\beta(z) \) and \(\alpha(z) \) are the range-dependent parameters of interest for atmospheric studies.
- The molecular scattering quantities are proportional to atmospheric number density (N\(_2\), O\(_2\), Ar).
- Unfortunately, they represent several unknowns in a single equation.
 - An underdetermined system (on its own!)
The Challenge

• The lidar equation describes one signal that depends on two atmospheric parameters, in different ways.
 – There is no unique solution
 – We must either reduce the number of parameters to one by:
 • Defining $S_a = \alpha / \beta$, (so $\alpha = S_a \beta$) or
 • Using Rayleigh β in aerosol-free regions to calibrate, or
 • Working in the mesosphere where $\alpha \sim 0$,
 – Or add more information:
 • From other instruments
 • Using Two (or more) wavelengths, angles, polarizations, etc.
 – Much of the history of LIDAR describes efforts to overcome this challenge!
Rayleigh Lidar (Upper Atmospheric Lidar)

- **Rayleigh lidar** essentially bypasses the lower atmosphere and only receives useful signal from >30 km where aerosols are typically not present (Hauchecorne and Chanin; 1980)
 - Measurements include: temperature, density, dynamics (gravity waves, tides, planetary waves)

- **Resonance fluorescence lidar** transmitted light is matched to a specific atomic transition or electronic transition of a specific atom (Bowman et al., 1969)
 - Upper atmospheric species studied: sodium, iron, potassium, calcium/calcium ion, nickel

- Limits studies to upper atmosphere
Fernald-Klett Data Analysis Method

• The Fernald-Klett algorithm is a **data analysis** method for retrieving aerosol extinction from lidar signal (Fernald et al., 1972; Fernald, 1984; Klett, 1981)

• Inversion technique, which requires additional information:
 – Estimated or modeled molecular extinction profile
 – Initial value of aerosol extinction at maximum range
 – Initial guess of the lidar aerosol extinction-to-backscatter ratio, \(S_a = \frac{\alpha_a}{\beta_a} \)
 – Auxiliary measurement to constrain the inversion (e.g. sun photometer aerosol optical depth measurement)

• This method is still widely used in modern atmospheric lidar programs like NASA’s Micro-Pulse Lidar NETwork (MPLNET; Welton et al., 2001)

Figure 3. MPLNET V3 Cloud, Aerosol and PBL Products
Welton et al., 2018
Depolarization and Multi-Wavelength Lidar

• Can add further **hardware capabilities** to distinguish aerosol types

• Depolarization lidar measures degree to which the received light’s polarization state has changed from the transmitter laser light

 – Lower depolarization → atmospheric scatterers are spherical

 – Higher depolarization → atmospheric scatterers are non-spherical

• Adding multiple wavelengths gives more information about particle sizes

Fig. 1. Time–height cross section of the range-corrected signal (upper panel, log-scale, a.u.) and the volume linear depolarization ratio (lower panel) at 532 nm derived from MULIS lidar measurements at Mässach from 16 April 17 UTC to 17 April 24 UTC.

Fig. 14. Particle lidar ratio vs. particle linear depolarization ratio for different aerosol types at 355 nm (left) and 532 nm (right).

Groß et al., 2012
Differential Absorption Lidar (DIAL)

• Transmit two different wavelengths that have distinct absorption cross-sections (σ) for the interrogated trace gas
 – Identify “on” and “off” wavelengths for selected trace gas, difference of cross sections proportional to difference in atmospheric extinction:

$$\Delta \alpha = \rho_{\text{trace gas}} \Delta \sigma$$

$$\rho_{\text{trace gas}} = \frac{1}{2 \Delta \sigma} \left[\frac{d}{dR} \ln \left(\frac{P_{\text{on}}}{P_{\text{off}}} \right) \right]$$

• Mostly used to measure trace gas concentrations: ozone, methane, water vapor, etc.

• Recent work has demonstrated DIAL system for temperature measurements (Stillwell et al., 2020)
Raman lidar

- Raman lidar creates a source at a new wavelength, in the scattering volume, by inelastic scattering molecular species
 - The Raman backscatter is much weaker than Rayleigh

- Raman lidars designed to receive two or more shifted wavelengths

- Raman lidar technique can be used to spectroscopically separate molecular and aerosol extinction

- Technique can also be used to measure:
 - Vibrational-rotational Raman: Trace gas concentrations (water vapor, methane, carbon dioxide)
 - Rotational Raman: Temperature

Fig. 14. Six-day time series of water vapor with 10 min time resolution. All data are shown, including data with a statistical error > 10%. The noisy zones above 5000 m (around noon) mark the increase in statistical error due to the solar background during the daytime. The white zones mark data gaps.
High Spectral Resolution Lidar (HSRL)

- HSRL technique optically separates Rayleigh (molecular) and Mie (aerosol) signals (Shipley, 1983)
- Spectral distribution of molecular signal is Doppler-broadened, aerosol spectral distribution is not broadened
 - An atomic-vapor filter is used to block the aerosol signal so that the molecular and aerosol signals can be separated
- Returned signal separated into two channels:
 - Molecular backscatter channel
 - Molecular + aerosol backscatter channel
- Profile of molecular density is modeled/measured from auxiliary instruments is required to calibrate
Doppler Wind Lidar

- Typically achieved with **coherent detection**: atmospheric backscatter signal, is mixed with a local oscillator reference beam (Pearson et al., 2009)

- Doppler shifts are determined from the spectrum of the mixed signal

- Most systems are built to scan and measure line-of-sight velocities at each pointing angle in the scan
 - LOS winds can be decomposed into 3D components

- Commercial systems widely available (Halo Photonics, Vaisala)

Range/time/Doppler plot for a fixed LOS 40 m gates, 1-second average per ray, 6-minute record. The raw data were saved and re-processed as shown below.

https://halo-photonics.com/lidar-systems/streamline-allsky-series/
Lidar Design

• There are many different types lidar to choose from!

• Lidar performance is affected by many atmospheric, optical, electronic, mechanical, algorithmic, and geometric factors

• High-fidelity atmospheric lidar simulator coupled with Monte Carlo analysis has been developed to aid in lidar system design and algorithm development (Valenta & Sox, 2022)
Overview

- Atmospheric Lidar Theory
- History of Lidar for Atmospheric Study
- Recent Developments
Searchlight Lidar

- Lidar technique first proposed by Sygne, 1930 to measure atmospheric scatter from searchlight beams
- First measurements came from bistatic searchlight systems (e.g. Hulbert, 1937)
- Johnson et al., (1939) showed profile of atmospheric structure with respect to altitude using a “pulsed” system

<table>
<thead>
<tr>
<th>Lidar with searchlights</th>
<th>First Laser</th>
<th>First Lidar</th>
<th>Lidar Techniques Developed</th>
<th>Lidar Networks</th>
<th>NASA CALIPSO</th>
<th>ESA Aeolus</th>
</tr>
</thead>
<tbody>
<tr>
<td>1930s</td>
<td>1960</td>
<td>1960-1990s</td>
<td>2000s</td>
<td>2006</td>
<td>2018</td>
<td></td>
</tr>
</tbody>
</table>
First Ruby Lidar

- First working laser in 1960 (Maiman, 1960)
- Fiocco & Smullin demonstrated first ruby laser-based atmospheric lidar in 1963

<table>
<thead>
<tr>
<th>Lidar with searchlights</th>
<th>First Laser</th>
<th>First Lidar</th>
<th>Lidar Techniques Developed</th>
<th>Lidar Networks</th>
<th>NASA CALIPSO</th>
<th>ESA Aeolus</th>
</tr>
</thead>
</table>

Fiocco & Smullin, 1963
Many Lidar Techniques

- Many atmospheric lidar techniques were developed after the first system came online:
 - **Raman lidar** ~1960s-1970s: Leonard & Caputo, 1974; Cooney
 - **DIAL** ~ 1960s-1970s: Schotland, 1966
 - **HSRL** ~ 1980s: Shipley et al., 1984

- **Lidar with searchlights**
 - 1930s

- **First Laser**
 - 1960

- **First Lidar**
 - 1963

- **Lidar Techniques Developed**
 - **1960-1990s**
 - 1960s
 - 1970s
 - 1980s

- **Lidar Networks**
 - 2000s

- **NASA CALIPSO**
 - 2006

- **ESA Aeolus**
 - 2018

- **Measures, 1994**
Ground-based Lidar Networks

• NASA Micro-Pulse Lidar Network (MPLNET)
 – ~26 active Micro-pulse elastic backscatter lidars with depolarization functionality

• NASA Tropospheric Ozone Lidar Network (TOLNET)
 – ~6 DIAL Ozone lidars (Leblanc et al., 2018)

• European Aerosol Research Lidar Network (EARLINET)
 – 30+ elastic and multi-wavelength Raman lidars (Pappalardo et al., 2014)
Lidars in Space!

• NASA/CNES Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) onboard the CALIPSO satellite
 – Launched in 2006, ended 2023
 – Elastic backscatter lidar with depolarization and two wavelengths

• ESA Atmospheric Laser Doppler Instrument (ALADIN) onboard Atmospheric Dynamics Mission-Aeolus satellite
 – Launched in 2018, ended 2023
 – Doppler wind lidar for winds from 0-30 km

Lidar with searchlights	First Laser	First Lidar	Lidar Techniques Developed	Lidar Networks	NASA CALIPSO	ESA Aeolus

Fig. 4. (a) A 532-nm backscatter browse image, (b) cloud-aerosol mask, and (c) the corresponding aerosol subtyping plot showing vast smoke layer in southwestern Africa during the peak of the burning season, observed on 8 Aug 2006 and stretching across land into the South Atlantic. The relative scales are as in Fig. 3.

ESA/ECMWF:http://m.esa.int/SpaceInImages/Images/2018/09/Winds_imaged_by_Aeolus

Omar et al., 2009
Overview

• Atmospheric Lidar Theory
• History of Lidar for Atmospheric Study
• Recent Developments
Commercialization of Lidar

• Elastic backscatter lidar →
 – Droplet Measurement Technologies
 Micro Pulse Lidar
 – Ceilometers from Vaisala, Campbell Scientific

• Doppler wind lidar →
 – Vaisala WindCube
 – Halo Photonics Streamline Series

• DIAL →
 – Vaisala DA10 water vapor DIAL
Earth Cloud, Aerosol and Radiation Explorer (EarthCARE)

- ESA/JAXA mission to better understand Earth’s thermal and solar radiation balance

- Expected launch date: May 2024

- Atmospheric lidar (ATLID)
 - HSRL
 - Depolarization lidar
 - For cloud-top, thin-cloud profiling, aerosol profiling

- Also includes:
 - Cloud profiling radar → penetrate clouds
 - Multispectral imager → wide-scene images
 - Radiometer → reflected & outgoing radiation

Modeled example data from Zadelhoff et al., 2023
Conclusions

• Light scattering interactions with molecules and particles have been employed as a method of atmospheric measurement for more than 90 years, with laser transmitters used in modern technology.

• Many different types of atmospheric lidar enable atmospheric studies of:
 – Temperature & composition \rightarrow Rayleigh, Raman, & Resonance Fluorescence lidar
 – Dynamics \rightarrow Doppler wind lidar
 – Aerosols & air quality \rightarrow elastic backscatter, Raman, & HSRL
 – Trace gases \rightarrow DIAL & Raman lidar

• Recent advancements have brought atmospheric lidar technology to the commercial sector and new lidar systems continue to be deployed on major satellite programs.
References

With acknowledgments to Irina Sokolik, Nathan Meraz, Jack Wood, Ryan James, and Dave Roberts

MPLNET Data from March 18, 2024 @ El Arenosillo in Doñana National Park, Spain: https://mplnet.gsfc.nasa.gov/data-policy